Distributed Maintenance of Anytime Available Spanning Trees in Dynamic Networks

نویسندگان

  • Arnaud Casteigts
  • Serge Chaumette
  • Frédéric Guinand
  • Yoann Pigné
چکیده

We address the problem of building and maintaining a forest of spanning trees in highly dynamic networks, in which topological events can occur at any time and any rate, and no stable periods can be assumed. In these harsh environments, we strive to preserve some properties such as cycle-freeness or existence of a unique root in each fragment regardless of the events, so as to keep these fragments functioning uninterruptedly to a possible extent. Our algorithm operates at a coarse-grain level, using atomic pairwise interactions akin to population protocol or graph relabeling systems. The algorithm relies on a perpetual alternation of topology-induced splittings and computation-induced mergings of a forest of trees. Each tree in the forest hosts exactly one token (also called root) that performs a random walk inside the tree, switching parentchild relationships as it crosses edges. When two tokens are located on both sides of a same edge, their trees are merged upon this edge and one token disappears. Whenever an edge that belongs to a tree disappears, its child endpoint regenerates a new token instantly. The main features of this approach is that both merging and splitting are purely localized phenomenons. This paper presents the algorithm and establishes its correctness in arbitrary dynamic networks. We also discuss aspects related to the implementation of this general principle in fine-grain models, as well as embryonic elements of analysis. The characterization of the algorithm performance is left open, both analytically and experimentally.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Providing a Simple Method for the Calculation of the Source and Target Reliabili- ty in a Communication Network (SAT)

The source and target reliability in SAT network is de- fined as the flawless transmission from the source node to all the other nodes. In some references, the SAT pro- cess has been followed between all the node pairs but it is very time-consuming in today’s widespread networks and involves many costs. In this article, a method has been proposed to compare the reliability in complex networks b...

متن کامل

Providing a Simple Method for the Calculation of the Source and Target Reliabili- ty in a Communication Network (SAT)

The source and target reliability in SAT network is de- fined as the flawless transmission from the source node to all the other nodes. In some references, the SAT pro- cess has been followed between all the node pairs but it is very time-consuming in today’s widespread networks and involves many costs. In this article, a method has been proposed to compare the reliability in complex networks b...

متن کامل

Token Traversal Strategies of a Distributed Spanning Forest Algorithm in Mobile Ad Hoc - Delay Tolerant Networks

This paper presents three distributed and decentralized strategies used for token traversal in spanning forest over Mobile Ad Hoc Delay Tolerant Networks. Such networks are characterized by behaviors like disappearance of mobile devices, connection disruptions, network partitioning, etc. Techniques based on tree topologies are well known for increasing the efficiency of network protocols and/or...

متن کامل

GSST: anytime guaranteed search

We present Guaranteed Search with Spanning Trees (GSST), an anytime algorithm for multi-robot search. The problem is as follows: clear the environment of any adversarial target using the fewest number of searchers. This problem is NP-hard on arbitrary graphs but can be solved in linear-time on trees. Our algorithm generates spanning trees of a graphical representation of the environment to guid...

متن کامل

A Distributed Spanning Tree Algorithm for Topology-Aware Networks

A topology-aware network is a dynamic network in which the nodes can detect whether locally topology changes occur. Many modern networks, like IEEE 1394.1, are topology-aware networks. We present a distributed algorithm for computing and maintaining an arbitrary spanning tree in such a topology-aware network. Although usually minimal spanning trees are studied, in practice arbitrary spanning tr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013